Pseudomonas chloritidismutans sp. nov., a non-denitrifying, chlorate-reducing bacterium.

نویسندگان

  • A F W M Wolterink
  • A B Jonker
  • S W M Kengen
  • A J M Stams
چکیده

A Gram-negative, facultatively anaerobic, rod-shaped, dissimilatory chlorate-reducing bacterium, strain AW-1(T), was isolated from biomass of an anaerobic chlorate-reducing bioreactor. Phylogenetic analysis of the 16S rDNA sequence showed 100% sequence similarity to Pseudomonas stutzeri DSM 50227 and 98.6% sequence similarity to the type strain of P. stutzeri (DSM 5190(T)). The species P. stutzeri possesses a high degree of genotypic and phenotypic heterogeneity. Therefore, eight genomic groups, termed genomovars, have been proposed based upon deltaTm values, which were used to evaluate the quality of the pairing within heteroduplexes formed by DNA-DNA hybridization. In this study, DNA-DNA hybridization between strain AW-1(T) and P. stutzeri strains DSM 50227 and DSM 5190(T) revealed respectively 80.5 and 56.5% similarity. DNA-DNA hybridization between P. stutzeri strains DSM 50227 and DSM 5190(T) revealed 48.4% similarity. DNA-DNA hybridization indicated that strain AW-1(T) is not related at the species level to the type strain of P. stutzeri. However, strain AW-1(T) and P. stutzeri DSM 50227 are related at the species level. The physiological and biochemical properties of strain AW-1(T) and the two P. stutzeri strains were compared. A common characteristic of P. stutzeri strains is the ability to denitrify. However, in growth experiments, strain AW-1(T) could use only chlorate or oxygen as an electron acceptor and not nitrate, perchlorate or bromate. Strain AW-1(T) is the first chlorate-reducing bacterium described that does not possess another oxyanion-reduction pathway. Cell extracts of strain AW-1(T) showed chlorate and bromate reductase activities but not nitrate reductase activity. P. stutzeri strains DSM 50227 and DSM 5190(T) could use nitrate or oxygen as an electron acceptor, but not chlorate. Chlorate reductase activity, in addition to nitrate reductase activity, was detected in cell extracts of both P. stutzeri strains. Chlorite dismutase activity was absent in extracts of both P. stutzeri strains but was present in extracts of strain AW-1(T). Based on the hybridization experiments and the physiological and biochemical data, it is proposed that strain AW-1(T) be classified as a novel species of Pseudomonas, Pseudomonas chloritidismutans sp. nov. The type strain is strain AW-1(T) (= DSM 13592(T) = ATCC BAA-443(T)).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dechloromonas hortensis sp. nov. and strain ASK-1, two novel (per)chlorate-reducing bacteria, and taxonomic description of strain GR-1.

Recent studies on the occurrence of (per)chlorate-reducing bacteria have resulted in the characterization of strains capable of dissimilatory (per)chlorate reduction. Phylogenetic analysis has shown that these bacteria are members of the Proteobacteria. Strains have been isolated from polluted and pristine sites, but only strains from polluted sites have been characterized in detail and deposit...

متن کامل

Characterization of the chlorate reductase from Pseudomonas chloritidismutans.

A chlorate reductase has been purified from the chlorate-reducing strain Pseudomonas chloritidismutans. Comparison with the periplasmic (per)chlorate reductase of strain GR-1 showed that the cytoplasmic chlorate reductase of P. chloritidismutans reduced only chlorate and bromate. Differences were also found in N-terminal sequences, molecular weight, and subunit composition. Metal analysis and e...

متن کامل

Genome and proteome analysis of Pseudomonas chloritidismutans AW-1T that grows on n-decane with chlorate or oxygen as electron acceptor.

Growth of Pseudomonas chloritidismutans AW-1T on C7 to C12 n-alkanes with oxygen or chlorate as electron acceptor was studied by genome and proteome analysis. Whole genome shotgun sequencing resulted in a 5 Mbp assembled sequence with a G + C content of 62.5%. The automatic annotation identified 4767 protein-encoding genes and a putative function could be assigned to almost 80% of the predicted...

متن کامل

Structure and Evolution of Chlorate Reduction Composite Transposons

UNLABELLED The genes for chlorate reduction in six bacterial strains were analyzed in order to gain insight into the metabolism. A newly isolated chlorate-reducing bacterium (Shewanella algae ACDC) and three previously isolated strains (Ideonella dechloratans, Pseudomonas sp. strain PK, and Dechloromarinus chlorophilus NSS) were genome sequenced and compared to published sequences (Alicycliphil...

متن کامل

Enzymes responsible for chlorate reduction by Pseudomonas sp. are different from those used for perchlorate reduction by Azospira sp.

Pseudomonas sp. PDA is an unusual bacterium due to its ability to respire using chlorate under aerobic conditions. The chlorate reductase produced by PDA was shown to be intrinsically different from the enzyme responsible for chlorate and perchlorate [(per)chlorate] reduction produced by Azospira sp. KJ based on subunit composition and other enzyme properties. The perchlorate reductase from str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of systematic and evolutionary microbiology

دوره 52 Pt 6  شماره 

صفحات  -

تاریخ انتشار 2002